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Resumo— Para algumas configurações especiais de robôs móveis e do espaço de trabalho, pode ser relativa-
mente fácil controlar a posição e orientação do robô, mas ao confrontar-se com estruturas complexas o problema
torna-se de dif́ıcil resolução geral. Este artigo propõe técnicas para o processo de geração de controle de posição,
ilustrando os problemas que podem ser relevantes durante a implementação f́ısica de robôs móveis e as soluções
t́ıpicas para tais problemas. Uma abordagem simples é utilizada como um incentivo ao projeto modularizado de
robôs móveis, incluindo capacidades de controle de posição e, conseqüentemente, medição de posição.

Palavras-chave— robôs móveis, navegação em robôs, medição de posição.

Abstract— For some special configurations of the mobile robot and its workspace, it is fairly easy to control
the mobile robot pose, but when confronting to complex structures the problem is much harder to solve in a
general way. This paper proposes some guidelines in the process of pose control, showing the problems that
may occur while implementing real mobile robots and the classic solutions for such problems. A minimalistic
approach is used as a way to get good modularized design of mobile robots, including pose control capabilities
and thus pose measurement.

Keywords— mobile robot, robot navigation, pose measurement.

1 Introduction

The problem of pose control in mobile robots in-
cludes modeling, physical and computational as-
pects. All these aspects make such problem in-
teresting and challenging, since the best balance
between all of them must be found to implement
a good mobile robot.

Understanding how the process of robot dis-
placement works makes possible to implement
good strategies that are coherent with the mobot
structure and still fully functional.

This paper describes some basic definitions
and assumptions over the environment and phys-
ical attributes of mobile robots, showing some of
the results of these assumptions with a sample mo-
bile robot structure.

The minimalist approach is used in order to
keep the implementation process at the higher
rank, reducing the overhead of the mobile robot
design process.

2 Definitions

This section intends to define the subjects of the
study in the simplest way possible, including only
the necessary concepts to be able to get some good
results. These concepts must be simple in order to
simplify the implementation effort by classifying
and modularizing the mobile robots components.

This way, the motors are defined, as well as
the relation between they and the mobile robot:

Definition 1 (Motor set) A motor set over p

is defined as a transformation Mu over Rn, pa-
rameterized by the input vector u in the Input Set
U , such that p(t) : R → W ⊆ Rn is the solution
of the (differential) equation:

ṗ = Mu(p) = M(p, u), M : Rn × U → Rn

Definition 2 (Mobile Robot (Mobot)) A
Mobot is a rigid body in workspace W ⊆ Rn with
pose pr ∈ W and a set of motors over pr.

A simple model of a mobot is thus presented
here, under the name of AlphaMobot. It mod-
els a 2-dimensional non-holomonic mobot which
position and direction have to be controlled.

So let the AlphaMobot pose pr = (x, y, θ) be
defined as the position of the rigid body in a XY
plane and its rotation in the z-axis related to the
x-axis (Figure 1(a)). The inputs u = (uv, uω) of
the motor set are the tangential and the rotational
speed of the mobot, respectively (Figure 1(b)).
The tangential speed is defined as the speed of
the mobot in the current direction θ, thus leading
to:

ṗr = M(x, y, θ, uv, uω) ⇒



ẋ
ẏ

θ̇


 =




uv · cos θ
uv · sin θ

uω




This suffices all the needs of Definition 2, us-
ing the whole R3 as workspace W and suppos-
ing that the Motors accept any range of input
(U = R2).

The purpose of a mobot is to movement itself
in the workspace. It uses its set of motors to do
so, but there is still the need to define the motors



Figure 1: AlphaMobot: (a) pose and (b) motor
set variables

input. If these inputs are human-controlled, the
mobot will be something like a (remote) controlled
vehicle. Although this can be interesting in some
aspects, if the mobot can control the inputs by
itself, then it will be possible to define places to
go instead of motors input.

In order to deal with this input control, the
Mobot Basic Problem is defined as follows:

Definition 3 (Mobot Basic Problem) Given
a mobot in W with initial position pr(0) = p0

and a desired final position p1 ∈ W , a solution of
the mobot basic problem is an input function u
(u : t → U) such that pr(tf ) = p1 with tf < ∞.

And so a basic mobot is a mobot that, from
any given start pose, defines its motors input so
that it could move itself to any desired pose.

Definition 4 (Basic Mobot) A basic mobot in
W is a mobot in which it is possible to solve the
mobot basic problem for every p0 and p1 ∈ W .

A basic mobot is a good start point for pose
controlled mobots. It is still not very sophisti-
cated, but the first step in building a mobot will
be accomplished by solving the basic mobot prob-
lem.

3 Results

Using the definitions of the previous section and
some assumptions over the systems proprieties it
can be easier to prove that some specific kind of
mobot solves the basic problem. In particular,
this section proves that the AlphaMobot is a ba-
sic mobot and gives some clues in how to test some
good characteristics in mobile robots, such as re-
vertible paths.

If the mobot can move between two poses for-
ward and backward simply by reversing its motors
inputs, it is easier to control its pose, since it is al-
ways possible to redo and undo movements. This
fact is easy to be verified using the motors set re-
lation, as illustrated in the following theorems.

Theorem 1 For a given mobot, if Mu is an
odd function related to the inputs (M(p, u) =

−M(p,−u)), and u is the solution for the mobot
basic problem for pr(0) = p0 and pr(tf ) = p1, then
ũ = −u is the input function for the mobot basic
problem for pr(0) = p1 and pr(tf ) = p0.

Proof: u is the solution for pr(0) = p0, pr(tf ) =
p1 and ṗ = M(p, u) ⇒ p1 = p0 +

∫ tf

0
M(p, u)dt ⇒

p0 = p1−
∫ tf

0
M(p, u)dt = p1 +

∫ tf

0
M(p,−u)dt ⇒

−u is the solution for pr(0) = p1, pr(tf ) = p0 2

Theorem 2 For a given mobot, if Mu is an
odd function related to the inputs (M(p, u) =
−M(p,−u)), the mobot is basic if and only if the
mobot is capable of solve the basic problem for at
least one final position p̃1, ∀p0 ∈ W .

Proof: (⇒) If the mobot is basic, it solves the ba-
sic problem for every p0, p1, thus solving in par-
ticular for all p0 and (at least) one p1.

(⇐) Given p0, p1 ∈ W , let ũ0 be the input
function so that pr(0) = p0 and pr(tf1) = p̃1 and
ũ1 the input function for pr(0) = p1 and pr(tf2) =
p̃1. Defining the input u as:

u(t) =
{

ũ0(t), t ≤ tf1

−ũ1(t− tf1), t > tf1

leads p0 → p̃1 → p1 (theorem 1), so that p(tf1 +
tf2) = p1 2

The path provided by theorem 2 is usually
non-optimal, since it assumes that the path be-
tween any two points pass through one special de-
fined point. This pictures an mobot that every
time it is commanded to get to another pose goes
back to home (p̃1) to be able to define the next
path. Anyway, the idea that it is always possible
to come back home is very comfortable and secure.

No assumption over the workspace is made
yet, although it sounds easier to control the pose
in “open” spaces, such as spaces without obsta-
cles and no need for avoidance. For example,
the AlphaMobot is originally placed in a infinite
workspace clean of obstacles.

By the other hand, the workspace can be dis-
connected (with two separable parts). In this case
there is a clear impossibility to get from a point
in one part to another point in the other, turn-
ing away the interest of the problem. So for now
on it is assumed that the workspaces are at least
connected.

3.1 Convex workspaces

Convex workspaces are very special workspaces
in which every two points can be connected by
a straight line and every point in the line is in the
workspace (Figure 2(a)). Connected workspaces
in general can be non-convex, but since they are
connected, there is always a path linking two
points.



Definition 5 (Convex space) A space W is
convex if, for all p0, p1 ∈ W , (t ·p0 +(1− t) ·p1) =
p ∈ W, 0 ≤ t ≤ 1.

Figure 2: Different workspaces: (a) convex and
(b) connected but non-convex workspace

It is easy to see that Rn is a convex space, giv-
ing some clues in how to solve the basic problem
for the AlphaMobot and leading to the following
result:

Theorem 3 The sample mobot defined in section
2 as AlphaMobot is a basic mobot.

Proof: For a given p0 = (x0, y0, θ0) and p̃1 =
(0, 0, 0), define u(t) = (v(t), w(t)) as:

w(t) =





π − arctan(y0/x0)− θ0, 0 ≤ t ≤ 1
0, 1 < t ≤ 2
arctan(y0/x0)− π, 2 < t ≤ 3

and

v(t) =





0, 0 ≤ t ≤ 1√
x2

0 + y2
0 , 1 < t ≤ 2

0, 2 < t ≤ 3

If the equation given by motor set definition is
integrated, it is possible to prove that pr(3) = p̃1,
for any p0. Moreover, the resultant path pr is an
straight line between p0 and p̃1. As W = R3 is
convex, the path is valid, since every point in the
path is in W . Thus, by theorem 2, the mobot is
basic. 2

Figure 3: Path pr produced by the input defined
in the proof of theorem 3

It is possible that for some purposes the sim-
ple connection between two points provided by the
basic mobot are not good enough, requiring the re-
sulting path to have other additional proprieties,
such as the smoothness.

Usually in mechanical systems functions of
class C3 are the minimum requirement for smooth
movements. This provides that the position,
speed and acceleration are all continuous. It is a
much harder problem to find inputs that suffices
these requirements than the basic problem.

Definition 6 (Mobot Ck problem) Given a
mobot in W with initial position pr(0) = p0 and
a desired final position p1 ∈ W , a solution of
the mobot Ck problem is an input function u of
class Ck (u : t → U) such that pr(tf ) = p1 with
tf < ∞.

In particular for the AlphaMobot, there is yet
a simple solution to the Ck problem, using splines,
since splines paths are exactly defined by the ini-
tial and final points positions and tangent vectors
(“speeds”).

Figure 4: Path constructed using splines

The tangential speed input can be easily cal-
culated from the spline formulation, as well as the
rotational speed (defined usually as torsion using
spline notation) and the splines definition assures
that the start and end points suffices the require-
ments.

3.2 Non-convex workspaces

The problem for non convex workspaces can be
hard to prove in such a general way, but since
the workspace must be at least connected, there
is always some path between two points. This
way, the real problem is to define motors inputs
in order to create this path or, instead, finding
such path and follow it by using a step by step
approach over small convex areas.

A general solution to this problem is to have a
map of convex areas and its connections, so that it
is possible to get to any pose within the same area
as usual and, for other areas, to switch between
two areas using special locations in the boundary
named as gates.

Graphs can be used to model the neighbor-
hood of areas, where the vertexes are the areas
and the edges are the gates. So it is possible to use
a wide set of graph tools to solve navigation prob-
lems, like finding one path between two areas or



Figure 5: Separating a non convex workspace in
three convex workspaces (a) and its neighborhood
graph (b)

(as easy as that) the shortest path between areas.
(Ferguson and Stentz, 2006; Carsten et al., 2006)

Moreover, if the workspace contais obstacles
or regions to avoid, a map will be needed for the
mobot to be able to plan the path. This map can
be pre-loaded and static, but this is a simplistic
approach, since it assumes that the real environ-
ment will not change significantly in the future,
which is in general false.

Another option is the self constructed map,
constructed by the mobot during some exploration
process, stored for future exploitation. Although
it is a much more complex approach, it works
pretty well, mainly because when humans con-
struct a map for the mobot they assume a struc-
ture that is obvious to them but not necessary to
the mobot, which have different sensorial tools.

4 Physical Implications in Pose Control

In order to solve the basic problem, the mobot
is required to define its motors input using some
variables that were assumed known. But, in a real
implementation, these variables must be measured
in order to be known. In fact, a mobot needs at
least to be able to know the current pose to define
the inputs as a function of it.

Measuring or estimating mobots pose (as in
AlphaMobots pr = (x, y, θ)) is generally problem-
atic. There are many usual solutions to solve
this problem, some of which had become very
popular among robots designers (Siegwart and
Nourbakhsh, 2004). Each one holds its advan-
tages and disadvantages, therefore combinations
between them are common. Also, considering the
fact that position is always measured in relation
to some known point, an origin (or “home pose”)
pr = p0 must be defined. The most common two
of the approaches are described in this paper.

4.1 Dead Reckoning

With Dead Reckoning (also called path integra-
tion), the mobot estimates its position through
time by using a initial position and applying all
the signals sent to its own motion devices to a
mathematical, simplified, model given by the mo-
tor set equation (Borenstein and Feng, 1994; Sieg-
wart and Nourbakhsh, 2004). For AlphaMobot,

this can be described as:

p(tf ) =




x(tf )
y(tf )
θ(tf )


 = p0 +

∫ tf

0




uv(t) · cos θ(t)
uv(t) · sin θ(t)

uω(t)


 dt

This model will then produce estimatives of
the current mobot position in relation to its po-
sition at (t = 0) which is known as the starting
point or origin.

This approach is simple because no informa-
tion from the environment is needed. The main
disadvantage of this technique relies on model im-
perfections, since the smallest error in the model
will be integrated through time, leading to pro-
hibitive position errors.

The model imperfections come from the as-
sumptions made for the mobot motors dynamics,
such as assuming that the output torque and its
resulting velocity is constant over time for a given
input, temperature and load. This assumption is
generally far from reality. Also, tires static fric-
tion coefficients with the ground are usually big
but cannot completely eliminate skidding, which
model is not trivial and thus is generally not con-
sidered.

There are two classes of position errors that
emerge from dead reckoning, translational and ro-
tational errors. Translational errors are produced
by imperfections in the model of uv(t) and thus
would generate the error




∆x(tf )
∆y(tf )
θ(tf )


 =

∫ tf

0




d(uv(t)) · cos θ(t)
d(uv(t)) · sin θ(t)

uω(t)


 dt

Given that ∆x(tf ) and ∆y(tf ) are produced
by the same d(uv(t)), they constitute a vector with
direction θe close, if not equal, to the desired mo-
tion vector component θ. This error is therefore
easy to overcome.

Rotational errors, in the other hand, are gen-
erated by imperfections in the model for θ(tf ) pro-
ducing the error




∆x(tf )
∆y(tf )
∆θ(tf )


 =

∫ tf

0




uv(t) · cos∆θ(t)
uv(t) · sin ∆θ(t)

d(uω(t))


 dt

In this situation, ∆x(tf ) and ∆y(tf ) won’t
form a vector with direction θe close to θ, thus gen-
erating an ever growing position error(Borenstein
and Feng, 1994).

In order to overcome this errors, the use of
wheel encoders are very common. Encoders on
wheels will act as an internal feedback of both
uv(t) and, considering the difference of two en-
coder readings on the wheels of a differential drive
system, uω(t). Although encoders may suggest
something like a “live reckoning”, the encoders are



internal to the robot structure and tires will never
be perfect (they will skid, bend, deform), so rota-
tional and translational errors will still be present.

4.2 Landmark-based feedback

If fixed features (i.e., landmarks) of the environ-
ment are trackable, landmark-based pose mea-
surement is an option. It is achieved when the
mobot can measure some of its pose components
related to a landmark that can be a wall, light
sources, ultrasonic beacon systems readings (Mata
et al., 2002; DeSouza and Kak, 2002; de Lima Ot-
toni and Lages, 2003).

Using the relative measured distance between
the mobot and a fixed landmark keeps errors lower
because even though distance measurement can
carry errors, they are not integrated in time, in
fact they can be even attenuated using good sam-
pling procedures.

Consider the simple problem of a mobot that
aims to cross a room following a straight line and
thus reaching a object with its θ = ∠π/2, in re-
lation to the objects angle (mainly for large ob-
jects as walls, for example). To reach its goal,
the mobot only needs to set its motion vector as
close as possible to the gradient of the scalar field
formed by D(pm) of each point of the room, de-
fined as:

D(pm) = D(xm, ym, θm) = dm

such that dm is the Euclidean distance be-
tween the mobot and the landmark. If the land-
mark is a straight wall, the mobot can even esti-
mate its θ.

Splitting (simplifying) this task in two is a
very effective way to solve this problem. The path
can be planned as was done in theorem 3 for Al-
phaMobot, so that in the first step the mobot sets
its θ pointing to the object, what can be accom-
plished by applying a constant input to its motion
system:

u = (uv, uω) = (0, ks)

, being ks a small enough rotational speed that
allows multiple readings of dm for a wide range of
θm, and then taking a θo that suffices





∂D(pm)
∂θm

= 0

∂2D(pm)
∂θ2

m
> 0

θo is the optimal travel direction to reach the
mobot goal, since it is the direction that provides
the minimum distance to the goal. The second
step consists in driving forward

u = (uv, uω) = (vd, 0)

until D(pm) goes zero. If the drive distance is
big, it might be necessary to repeat the first step

many times to correct forward driving imperfec-
tions.

Landmark-based pose measurement and con-
trol is usually the best approach given the fact
that errors do not grow over time. Mobot imper-
fections will be overcomed by the absolute land-
mark position measurement.

To locate and measure landmarks, the most
common approaches are laser, ultrasonic or
infrared rangefinders, machine vision systems,
stereoscopic machine vision systems, ultrasonic
beacon interpretteurs, contact or light sensors
(Erdtmann et al., 2005). Some landmark-based
systems even work with moving landmarks that
have known motion vector through time.

There are some other unusual, but not less
useful, types of landmarks. Earth’s magnetic
field is not exactly a “landmark” but act as one
as long as it provides the mobot equipped with
a Electronic Compass with absolute θ measure-
ment. Also, the floor can be used as a “contin-
uous landmark”, using an Optoelectronic Sensor
coupled with a LED, both pointing to the ground,
as seen in any commercial optical mouse, can pro-
duce external feedback on the motion vector of the
mobot. Global Positioning System (GPS) is also
a landmark-based pose measurement system.

This approach disadvantage lies on the facts
that sometimes it is really problematic and not
trivial to measure the landmark position and that
sometimes reliable landmarks are not available.

4.3 Hybrid Approaches

As suggested before, many hybrid solutions to
pose measurement, and therefore control, are pos-
sible.

Providing a mobot with an electronic com-
pass, it is possible to correct rotational errors from
time to time. A very simple proportional control
system can be created to control the mobot angle:

Figure 6: Angle control using an electronic com-
pass

To a given measured angle θm and a desired
angle θd, acting periodically on the motors pro-
portionally to the error (θd − θm) would lead ro-
tational errors to null. Using this system, dead
reckoning corrections can become very effective.
The integral nature of the system eliminates con-
stant rotational errors while the control is on.

This concept was simulated (as seen in fig-
ures 7 and 8) and the control system managed to
eliminate rotational errors even on mobots that,



without this system, would suffer from rotational
errors as big as 30 degrees on a relative small (10
cm - a third the size of the robot) forward drive.

Figure 7: Mobot simulation without any angle
control system

Figure 8: Mobot simulation using the proposed
angle control system

This approach uses the magnetic field as con-
tinuous landmark, combined with accurate dead
reckoning.

5 Conclusions

The process of definition and illustration of poten-
tial problems (and its solution) is a good project
practice, since it unveils characteristics that were
assumed not relevant in a quicker analysis.

Some problems, as the pose measurement,
have usual solutions, but they can be pretty hard
to implement in confined spaces and mobile envi-
ronments, where almost nothing can be assumed
static.

It is possible to get good results by using ba-
sic elements, such as electronic compass and mixed
navigation approach with dead reckoning for small
displacements and landmarks for area shifting (as-
suming that a pre-build static map can be used).

With the enhanced portability of modern
computing, more general and robust approaches

could be implemented by using “bulkier” senso-
rial systems, such as machine vision and stereo
vision, allowing several landmarks to be detected
and good pose estimatives, but the software de-
sign for object recognition is still a problem to be
solved.
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